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Abstract
1.	 Understanding animal movement often relies upon telemetry and biologging de-

vices. These data are frequently used to estimate latent behavioural states to help 
understand why animals move across the landscape. While there are a variety of 
methods that make behavioural inferences from biotelemetry data, some features 
of these methods (e.g. analysis of a single data stream, use of parametric distribu-
tions) may limit their generality to reliably discriminate among behavioural states.

2.	 To address some of the limitations of existing behavioural state estimation models, 
we introduce a nonparametric Bayesian framework called the mixed-membership 
method for movement (M4), which is available within the open-source bayes-
move R package. This framework can analyse multiple data streams (e.g. step 
length, turning angle, acceleration) without relying on parametric distributions, 
which may capture complex behaviours more successfully than current methods. 
We tested our Bayesian framework using simulated trajectories and compared 
model performance against two segmentation methods (behavioural change point 
analysis (BCPA) and segclust2d), one machine learning method [expectation-
maximization binary clustering (EMbC)] and one type of state-space model [hid-
den Markov model (HMM)]. We also illustrated this Bayesian framework using 
movements of juvenile snail kites Rostrhamus sociabilis in Florida, USA.

3.	 The Bayesian framework estimated breakpoints more accurately than the other 
segmentation methods for tracks of different lengths. Likewise, the Bayesian 
framework provided more accurate estimates of behaviour than the other state 
estimation methods when simulations were generated from less frequently con-
sidered distributions (e.g. truncated normal, beta, uniform). Three behavioural 
states were estimated from snail kite movements, which were labelled as ‘en-
camped’, ‘area-restricted search’ and ‘transit’. Changes in these behaviours over 
time were associated with known dispersal events from the nest site, as well as 
movements to and from possible breeding locations.

4.	 Our nonparametric Bayesian framework estimated behavioural states with com-
parable or superior accuracy compared to the other methods when step lengths 
and turning angles of simulations were generated from less frequently consid-
ered distributions. Since the most appropriate parametric distributions may not 
be obvious a priori, methods (such as M4) that are agnostic to the underlying 
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1  | INTRODUC TION

Our understanding of animal movement has advanced considerably 
in recent decades with the emergence of the field of movement 
ecology (Fraser et  al.,  2018; Joo, Picardi, et  al.,  2020), which fo-
cuses on understanding where animals go, what they are doing and 
how they are influenced by their surrounding environment (Nathan 
et  al.,  2008). As telemetry and biologging devices continue to in-
crease in their battery life, data resolution and affordability (Hussey 
et al., 2015; Kays et al., 2015), statistical methods that can efficiently 
analyse these large datasets will become ever more important 
(Patterson et al., 2017; Potts et al., 2018). To fully understand animal 
movement, it is necessary to account for behaviour since space and 
resource use are directly linked to an animal's internal state (Gurarie 
et al., 2016; Nathan et al., 2008).

Since the direct observation of animal behaviour can be challeng-
ing in many situations, recorded tracks from biologging devices are 
increasingly used to infer potential behaviour by estimating latent 
states. These latent states can be estimated from a variety of data 
streams (i.e. time series of variables) such as step lengths, turning an-
gles, ambient temperature and acceleration, among others (Edelhoff 
et al., 2016). State estimation is often performed using segmenta-
tion and clustering methods, as well as state-space models (SSMs). 
Segmentation methods partition tracks into segments by detecting 
shifts in the data stream(s), whereas clustering methods classify 
these segments (or the observations directly) into discrete states. 
Alternatively, SSMs estimate latent states per observation based on 
the transition probabilities among a given number of states (Edelhoff 
et  al.,  2016; Gurarie et  al.,  2016). While existing state estimation 
methods provide fast or powerful predictive capacity (Edelhoff 
et al., 2016; Patterson et al., 2017), they possess a number of lim-
itations that can impact the inference made on behavioural states.

For instance, segmentation methods commonly infer behaviour 
using only a single data stream such as persistence velocity or 
speed (Edelhoff et  al.,  2016; but see Patin et  al.,  2020). This can 
be problematic when underlying behaviours are complex and not 
well-represented by a single metric alone. Additionally, many seg-
mentation methods, clustering methods and SSMs typically estimate 
behavioural states by fitting the data streams to parametric proba-
bility distributions (e.g. Edelhoff et al., 2016; Joo, Boone, et al., 2020; 
Patterson et al., 2017), such as Gaussian, gamma or wrapped Cauchy 
distributions. When the structure in the data streams is not well-
captured by parametric distributions, this can often result in over-
estimation of the true number of states when information criteria 
are used due to model misspecification (Gurarie et al., 2016; Pohle 

et al., 2017). Furthermore, running SSMs and some clustering meth-
ods can be computationally costly: model runtime can take minutes 
to days depending on the type of model, sample size, number of es-
timated states and computer hardware. This is further exacerbated 
when model selection (e.g. determining the likely number of groups 
by fitting models with different numbers of groups) and multi-model 
inference are performed.

Given the limitations posed by existing state estimation meth-
ods, there is a need to develop a framework that is based on as few 
parametric assumptions as possible while also being fast and flexible. 
Here, we introduce a new two-stage modelling framework called 
the mixed-membership method for movement (M4) that implements 
nonparametric Bayesian methods to: (a) jointly segment multiple 
data streams into relatively homogeneous units of behaviours; and 
(b) subsequently determine the likely number of behavioural states 
using a mixed-membership method where segments can be com-
prised of more than one behavioural state. Latent behavioural states 
are estimated for entire track segments (as opposed to individual 
observations) since this reflects our understanding that behaviour 
is inherently autocorrelated, especially when observations are sam-
pled at short time intervals (Pohle et al., 2017; Potts et al., 2018). 
Additionally, track segments are expected to be characterized by 
multiple states (Patin et al., 2020; Pohle et al., 2017). This M4 model 
framework is available within the open-source R package bayes-
move available on CRAN (Cullen & Valle, 2021). In this article, we 
describe the model structure and the Bayesian sampling methods 
used to estimate from the posterior distribution. We then demon-
strate that M4 can successfully recover breakpoints and behavioural 
states based on simulated trajectories and compare our model's per-
formance against two common segmentation methods (behavioural 
change point analysis (BCPA), Gurarie et  al.,  2009; segclust2d, 
Patin et  al.,  2020), one machine learning method (expectation-
maximization binary clustering (EMbC), Garriga et al., 2016) and one 
type of SSM, a hidden Markov model (HMM). Finally, we illustrate 
our novel approach on the movements of an endangered raptor spe-
cies, the Everglade snail kite Rostrhamus sociabilis, and interpret the 
results within the context of natal and breeding dispersal events.

2  | MATERIAL S AND METHODS

2.1 | Model structure

Most existing segmentation methods (e.g. BCPA, segclust2d, behav-
ioural movement segmentation), some machine learning methods 

distributions can provide powerful alternatives to address questions in movement 
ecology.
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(e.g. EMbC) and most SSMs (e.g. HMMs, multistate random walks) 
experience one or more common limitations to behavioural state 
estimation. These limitations include the reliance on parametric dis-
tributions, analysis of only a single data stream, as well as reliance on 
information criteria to determine the most likely number of states.

2.1.1 | Discretization of data streams

We address the problem of parametric distributions by providing an 
approach that relaxes parametric assumptions through the discre-
tization of data streams (Figure 1a–c). Although data streams (e.g. 
step lengths and turning angles) are not typically discretized into 
bins, we expect that this may lead to more robust estimates in the 
face of parametric distribution uncertainty. This is because bins are 

estimated independently of one another and extreme values lose 
their influence when added to the first or last bins with the rest of 
the data. Therefore, the discretization of data streams is expected 
to increase model flexibility (John & Langley, 1995; Kitagawa, 1987).

Selecting the number of bins and the binning method is rela-
tively subjective and therefore it is important that prior biological 
reasoning be used to inform these decisions. For example, discreti-
zation methods may include the use of equal bin widths or quantiles. 
However, the number of bins should be sufficient to characterize 
the shape of the density distribution. These assumptions during the 
discretization process are not unlike assumptions made for HMMs 
when selecting probability distributions to fit data streams, but 
require practitioners to make more decisions up front. Based on a 
sensitivity analysis of binning methods used on a right-skewed data 
stream (i.e. step lengths), the use of quantiles resulted in greater 

F I G U R E  1   General workflow to 
analyse animal trajectories from telemetry 
data using M4. Steps from this analysis 
include: (a) starting with a track of 
coordinates that are used to calculate step 
lengths and turning angles, (b) discretizing 
step lengths and (c) turning angles into 
sets of bins, (d) performing segmentation 
on the joint time series of step lengths 
and turning angles, (e) cluster the track 
segments into behavioural states by latent 
Dirichlet allocation (LDA) (matrix Φ)  
and (f) evaluate time series of behaviour 
proportions for each individual (matrix Θ),  
and (g) visualize the annotated tracks by 
displaying the dominant behaviour of 
each time series. Note that continuous 
time series are only displayed with 
breakpoints (black lines) in (d) to improve 
the interpretability of segments

1) Discretize data streams
(i.e. bin the data)

2) Segment the track
(create breakpoints)

4) Annotate track

3) LDA clustering and
behavior estimation

(a)

(b)

(d)

(e) (f)

(g)

(c)
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discrimination of behavioural states than bins of equal widths 
(Appendix S1). However, data streams with circular distributions (e.g. 
turning angles) will likely be more interpretable when using bins of 
equal widths. At a minimum, discretized values for each data stream 
and the associated track IDs are required to begin analysing the data.

2.1.2 | Segmentation

Similar to other segmentation methods, our model aims to divide 
tracks into segments by estimating a set of breakpoints. Through the 
use of joint probabilities within a Bayesian framework, we circum-
vent the limitation of analysing only a single data stream. Moreover, 
our model estimates the location and number of unknown break-
points by implementing a Gibbs sampler within a reversible-jump 
Markov chain Monte Carlo (RJMCMC) algorithm. RJMCMC is a 
trans-dimensional algorithm that serves as a model-based approach 
to model selection by providing simultaneous inference on param-
eter values given a particular model, as well as model space (i.e. the 
collection of all possible models) (Green, 1995). In particular, we use 
a birth–death RJMCMC that allows the addition (i.e. birth), removal 
(i.e. death) or swap of proposed breakpoints where model parame-
ters are updated from the known posterior distribution using a Gibbs 
sampler (see Appendix S2 for more details). We adopt this approach 
to perform unsupervised segmentation on each individual trajec-
tory. In our framework, each potential model Mk is characterized by a 
set of P breakpoints {b1k ,…, bPk}, where k is the model number. Each 
breakpoint is restricted to being an integer between 2 and Ti−1 across 
all observations, where Ti is the total number of observations for in-
dividual i. Given a particular model Mk, its breakpoints define track 
segments. We assume that for any given track segment c:

where xitj is the bin label for individual i at time t for data stream j and 
�cj is a vector of probabilities that sum to 1. The vector �cj indicates 
the probability that observations within segment c are assigned to 
one of the L bins. Overall, the model is seeking breakpoints that de-
fine relatively homogeneous track segments. The use of a categorical 
distribution to characterize track segments (as opposed to continuous 
distributions) is what makes this framework nonparametric. Our prior 
is given by:

where α > 0 is equal across all bins. We integrate over the latent param-
eter �cj to enable the algorithm to visit multiple models and increase 
computational efficiency. Since there are no longer any remaining pa-
rameters on which to assess model convergence, we do so by evalu-
ating trace plots of the log marginal likelihood (Denison et al., 2002). 
Details for the derivation of the full conditional distributions can be 
found in Appendix S3.

Since the posterior distribution of models Mk can vary greatly 
in the number and position of breakpoints, but only a single set of 
breakpoints can be used to define track segments, we select the max-
imum a posteriori (MAP) estimate (i.e. the breakpoints of the model 
with the greatest log marginal likelihood) (Figure 1d). Although the 
MAP estimate does not account for uncertainty in breakpoint num-
ber and position, it appears to be in good agreement with estimates 
from the entire posterior distribution as described in Appendix S4. 
These MAP breakpoints are then used to define segments per in-
dividual track, which are subsequently clustered into latent be-
havioural states by a mixed-membership model.

2.1.3 | Mixed-membership clustering

Although most existing state estimation methods assign a sin-
gle discrete state to observations or track segments (e.g. Garriga 
et  al.,  2016; McClintock & Michelot,  2018; Patin et  al.,  2020; but 
see Jonsen et al., 2019), animal movement may not be entirely com-
prised of a single behaviour over a given sampling interval (Patin 
et al., 2020; Pohle et al., 2017). Latent Dirichlet allocation (LDA), a 
mixed-membership clustering method, can be used to classify each 
track segment as a mixture of multiple states (Hudon et al., 2021; 
Valle et al., 2014). For example, a proportion of observations within 
a given track segment might belong to state 1 while another propor-
tion might belong to state 2 and so on.

LDA is used to characterize track segments in terms of their 
behavioural state components, where each state corresponds to 
a distribution of discretized data streams. To do so, the model es-
timates the probability of observations from each track segment 
(rows) belonging to each latent state (columns) in matrix Θ (Figure 1f). 
Additionally, the model characterizes the latent states (rows) with 
the probability of observations belonging to each bin per discretized 
data stream (columns) in matrix � (Figure 1e). The track segments 
from all individual animals are analysed together since we assume 
that there is a common set of behaviours exhibited across the pop-
ulation. Although there may be some individual heterogeneity in 
movement patterns, the pooling of all individuals ensures that be-
havioural states are directly comparable and improves the inference 
on individuals with fewer observations (Jonsen, 2016). In this model, 
we assume that:

where yijct denotes the bin for time t of track segment c from data 
stream j for individual i. Additionally, zijct is the latent behavioural state 
membership associated with yijct and �kj is a vector of probabilities for 
each behaviour and data stream. Notice that zijct influences the dis-
tribution for yijct by determining the subscript k for the vector �kj. We 
assume that the latent state membership is given by:

xitj ∼ Categorical(�cj),

�cj ∼ Dirichlet(�),
yijct

|||
{zijct = k} ∼ Categorical(�kj) ,

zijct ∼ Categorical(�ic ),
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where �ic is a vector of probabilities of size K (i.e. the number of clus-
ters or states) that sum to 1 and indicates the likelihood of assigning 
an observation at time t of track segment c for individual i to each 
behavioural state k. This formulation assumes that each observation 
within a particular track segment must belong to a single behavioural 
state, but that track segments are comprised of multiple states. For our 
priors, we assume that:

where TSB(�) represents the truncated stick-breaking prior from 
Bayesian nonparametrics. This prior is given by:

where VK = 1 and γ > 0. By setting 0 < 𝛾 < 1, we can shrink the prob-
ability of assigning state k to track segment c (i.e. �ick) to approximately 
zero as k approaches K. As a result, fewer and fewer observations will 
be assigned to states with large values of k, enabling the model to 
identify the most likely number of behavioural states (Valle et al., in 
press; Valle et al., 2017). This is an improvement on existing state esti-
mation methods in the sense that our model only needs to be run once, 
whereas several other common methods (e.g. HMMs, segclust2d and 
other clustering methods) are typically run multiple times with varying 
numbers of behavioural states to then determine the best model via 
information criteria (e.g. AIC or BIC).

This LDA model is fitted using a Gibbs sampler and a complete 
description of the full conditional distribution can be found in 
Appendix S5. Similar to the segmentation model, convergence was 
assessed by inspecting trace plots of the log-likelihood. The poste-
rior mean for all �ic was then used to identify the most likely number 
of behaviours. The estimated state-dependent distributions for each 
data stream (from �kj) were evaluated and used to corroborate the 
findings based on the posterior means from all �ic’s by determining 
whether the distributions were biologically relevant (Figure  1e–g). 
This combination of results provides a straightforward approach to 
selecting the most likely number of behavioural states. A list of the 
primary functions to analyse data using the M4 framework within 
the bayesmove R package is included in Appendix S6.

2.2 | Simulation study

We assessed the performance of M4 compared to other methods 
via simulations. We first evaluated the ability of our track segmenta-
tion method to detect true breakpoints and compared its results to 
those obtained by two segmentation methods (i.e. BCPA and seg-
clust2d). We then evaluated the ability of our clustering method to 

estimate the true number of behavioural states and to properly as-
sign behaviour proportions to track segments. For this component, 
we compared the results of our model to those obtained by a HMM 
(McClintock & Michelot, 2018) and two additional clustering meth-
ods (i.e. segclust2d and EMbC).

2.2.1 | Generating simulated trajectories

We generated multiple three-state trajectories from a correlated 
random walk at regular time intervals, where five tracks were simu-
lated at each of four durations (1,000, 5,000, 10,000 and 50,000 
observations), resulting in a total of 20 tracks. Each track was com-
prised of 10, 50, 100 or 500 segments that each included 100 ob-
servations. Each of these segments included a dominant behavioural 
state (80% of observations), which was randomly assigned to each 
segment. The three behavioural states were parameterized to rep-
resent (a) little to no movement (‘encamped’), (b) slow and tortuous 
movement (‘area-restricted search’ or ARS), as well as (c) fast and di-
rected movement (‘transit’). To assess model performance on tracks 
generated from different types of distributions, we generated two 
sets of tracks with 20 simulations in each. In the first set of simula-
tions, step lengths for each behaviour were drawn from a truncated 
normal distribution and turning angles were drawn from either a 
beta, uniform or truncated normal distribution (hereafter referred 
to as ‘uncommon distributions’) (Figure  2a). For the second set of 
simulations, step lengths for each behavioural state were generated 
from a gamma distribution and turning angles were drawn from a 
wrapped Cauchy distribution (hereafter referred to as ‘common dis-
tributions’) (Figure  2b). Both sets of simulations were designed to 
generally resemble each other in their step length and turning angle 
distributions. Additional comparisons of simulated tracks generated 
from a HMM can be found in Appendix S11.

2.2.2 | Implementation of Bayesian M4 framework

Step lengths and turning angles were the data streams used to make 
inference on latent behavioural states. Step lengths were separated 
into five bins using the 25th, 50th, 75th, 90th and 100th quantiles as 
upper limits. Quantiles were used to discretize highly right-skewed 
step lengths as suggested by our sensitivity analysis (Appendix S1). 
Turning angles were discretized into eight bins from − � to � using 

equal widths 
(

�

4

)
 since the distribution of this variable was relatively 

balanced and bounded by lower and upper limits.

Each simulated track was analysed by the M4 segmentation 
model using a vague prior where the hyperparameter α was set to 
1. Trace plots of the log marginal likelihood indicated that the model 
reached convergence for each simulation, where 40,000 MCMC 
iterations were used for all but the longest tracks, which used 
60,000 iterations (Appendix  S7). We then assessed how well our 
model identified the true breakpoints for each simulation, where 

�kj ∼ Dirichlet(�),

�ic ∼ TSB(�),

�ick = Vick

k−1∏

p=1

(1 − Vicp),

Vick ∼ Beta(1, �),
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a threshold of ±10 observations was used to distinguish an accu-
rate from an inaccurate estimated breakpoint. If no breakpoints 
were estimated within ±30 observations of a true breakpoint, then 
the model was considered to have ‘missed’ that breakpoint. Other 
thresholds were tested and all resulted in the same relative pattern 
of accuracy (Appendix S1).

Estimated track segments were used as input for the LDA model 
of M4, which was run using 1,000 MCMC iterations, a burn-in of 
500 iterations and vague priors where hyperparameters were set 
to γ = 0.1 and α = 0.1. We set the maximum number of behavioural 
states to seven since this was expected to include the true num-
ber of states, estimated via the truncated stick-breaking prior of 
the LDA. Trace plots of the log-likelihood indicated that the model 
reached convergence for each simulation (Appendix  S7). The true 
number of states was estimated by calculating the arithmetic mean 
of behaviour proportions across all track segments and selecting 
the set of states that together represented ≥90% of all observa-
tions on average. Additionally, state-dependent distributions of step 
lengths and turning angles were inspected so that we only selected 
states that were also biologically interpretable. Since the LDA treats 
track segments as a combination of behavioural states, proportions 
of each state were estimated per track segment. The accuracy of 

state estimates was evaluated by two methods: (a) we calculated the 
percentage of observations where the dominant behaviour of each 
track segment was accurately classified, and (b) we calculated the 
root mean square error (RMSE) of the estimated behaviour propor-
tions compared to the true behaviour proportions over all states and 
track segments.

2.2.3 | Method comparison

We compared the performance of M4 on the simulated trajectories 
against BCPA, EMbC, HMM and segclust2d (see Appendix S8 for de-
tails regarding model properties and assumptions). All models were 
run using a 2.6 GHz i7 CPU with 16 GB RAM.

Segmentation models
The BCPA model performed segmentation based on persistence ve-
locity (PV), which is a combination of velocity (V) and turning angle 
(θ) [i.e. PV = V cos(θ)], using the R package bcpa v1.1 (Gurarie, 2014). 
Parameters for BCPA were tuned to provide a close approximation 
of the true number and location of simulated breakpoints with win-
dow size set to 80, sensitivity set to 2 and clusterwidth set to 30. 

F I G U R E  2   Uncommon (a) and common 
(b) distributions used to generate step 
lengths and turning angles for each 
simulated state. (a) Step lengths are 
generated from a truncated normal (TN) 
and turning angles are generated from 
beta, uniform and truncated normal 
distributions. TN(a,b,c,d) denotes a 
truncated normal distribution with mean 
a, standard deviation b, lower bound c 
and upper bound d. (b) Step lengths are 
generated from a gamma distribution 
and turning angles are generated from a 
wrapped Cauchy (WC) distribution
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Breakpoint accuracy was evaluated using the same method as for 
M4.

The segclust2d model performed segmentation on step lengths 
and the absolute value of turning angles using the R package seg-
clust2d v0.2.0 (Patin et al., 2019). This method models each data 
stream using a Gaussian distribution, so the absolute value of turning 
angles was used to accommodate this unimodal assumption. Tuning 
parameters were chosen within the bounds of the simulated tracks, 
such that the maximum number of segments was set to 1.5  ×  s, 
where s is the true number of segments, the minimum observations 
per segment was set to 50 and the number of potential clusters (i.e. 
states) ranged from 2 to 4. Since the model was still analysing the 
longest simulations (50,000 observations) after 2 days, these tracks 
were omitted from the reported results for segclust2d. Breakpoint 
accuracy was assessed in the same manner as for M4.

Clustering models
The EMbC model was fitted to step lengths and the absolute value of 
turning angles using the R package EMbC v2.0.3 (Garriga et al., 2019). 
The absolute value of turning angles was used to achieve better dis-
crimination among states given the use of a unimodal distribution 
like the Gaussian distribution. This model uses binary clustering to 
partition each of n data streams into a ‘low’ and ‘high’ class, result-
ing in a total of 2n possible states. For our analysis, this resulted in 
four states estimated from a bivariate Gaussian distribution. To make 
these results comparable to the other models, both states with ‘high’ 
step lengths (and ‘low’ or ‘high’ turning angles) were merged into a 
single state to produce three states overall. State classification ac-
curacy was assessed at the segment level so that results were di-
rectly comparable with the Bayesian M4 model. This was achieved 
by using true breakpoints to segment the time series of states esti-
mated by the EMbC model and then calculating the proportion of 
these behaviours within each track segment. Additionally, the result-
ing state-dependent distributions of step lengths and turning angles 
were discretized using the bin limits defined for M4 to compare the 
accuracy of distribution shapes. Accuracy was measured by RMSE 
across bins of all states and data streams per simulation.

A discrete-time HMM was also fitted to each of the simulated 
trajectories using the R package momentuHMM v1.5 (McClintock & 
Michelot, 2018). Step lengths were modelled using a gamma distri-
bution, and turning angles were assumed to arise from a wrapped 
Cauchy distribution. The HMMs for each simulation were run using a 
range of two to four possible behavioural states (K) and each K-state 
model was run 30 times using different starting values to increase 
the chance of finding the global (as opposed to local) maximum of 
the likelihood. The selection of ‘good’ starting values is critical since 
it can affect computation time and the ability of the model to identify 
the global maximum of the likelihood (McClintock & Michelot, 2018; 
Michelot et  al.,  2016). The most likely number of states was se-
lected using a combination of AIC and BIC, where the model with 
the lowest value was considered to be most likely. However, if the 
difference in AIC or BIC (ΔAIC/BIC) of the next best model was <10 
(Burnham & Anderson,  2002), the more parsimonious model was 

chosen. Behaviour classification accuracy was assessed in the same 
manner as for EMbC.

The segclust2d model clustered segments previously estimated 
by this method into K states. The number of likely states was es-
timated using BIC in the same manner as for HMM. The likely 
number of states (and associated breakpoints) were used to assign 
behavioural states to track segments, which were then compared to 
the other methods using the proportion of each state per estimated 
segment (which were all either 0 or 1). Additionally, the accuracy of 
the state-dependent distributions was evaluated in the same man-
ner as for EMbC and HMM.

2.3 | Snail kite case study

As part of a larger investigation on the effects of wetland manage-
ment on wildlife, solar-powered GPS-GSM transmitters (Ecotone 
Telemetry) were attached to juvenile snail kites (n  =  26) prior to 
fledging at Lakes Tohopekaliga, East Tohopekaliga and Kissimmee in 
central Florida during 2018 and 2019. Tagging of snail kites was con-
ducted under US Geological Survey BBL Permit #23906. Subsequent 
movement of each individual resulted in a total of 40,720 observa-
tions (Figure 3). Locations were collected once per hour only during 

F I G U R E  3   Tracks from 26 GPS-tagged snail kites in central 
Florida (2018–2019), where colours indicate different individuals
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daylight at an accuracy of ±30 m. As a result of the programmed duty 
cycle and time periods where GPS tags failed to transmit data, track 
time intervals were irregular. To ensure comparable step lengths 
and turning angles, we filtered our data to the most common time 
interval (i.e. 1 hr). We chose to omit all other observations since im-
putation procedures for long time gaps would increase the number 
of artificial data and the use of linear interpolation would artificially 
inflate the number of turning angles at zero radians.

Step lengths and turning angles were used to estimate latent 
behavioural states. As was performed on the simulated tracks, step 
lengths for the empirical data were discretized into five bins using the 
25th, 50th, 75th, 90th and 100th quantiles as upper limits. This re-
sulted in bin limits at 0.00, 0.03, 0.09, 0.32, 1.63 and 72.56 km. Turning 
angles were discretized into eight bins from − � to � using equal bin 
widths, resulting in bin limits at − π, −
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Step lengths and turning angles for each of the 26 snail kites 
were analysed by the M4 segmentation model using 80,000 itera-
tions, a burn-in of 40,000 iterations and hyperparameter � = 1. The 
MAP estimates of breakpoints for each snail kite were used to define 
track segments per individual. Subsequently, track segments were 
analysed across all individuals via LDA to estimate the most likely 
number of states, to define state-dependent distributions and to es-
timate the proportion of each state that characterized each track 
segment. This was performed using 1,000 MCMC iterations with a 
burn-in of 500 iterations and vague priors were used with hyperpa-
rameters set at γ = 0.1 and α = 0.1 for a maximum possible number of 
seven states. Trace plots of the segmentation and LDA models from 
M4 indicated that all had reached convergence (Appendix S7). The 
proportions of behavioural states were evaluated over time in rela-
tion to emigration from natal sites and peak breeding season of snail 
kites in Florida (1 March–30 June; Reichert et al., 2020) to discern 
any patterns associated with these events.

3  | RESULTS

3.1 | Segmentation model comparison

The M4 segmentation model successfully recovered breakpoints 
from the simulations and outperformed both BCPA and segclust2d. 
Among the three methods, the segclust2d model took much longer 
to run (0.46 to 418 min) compared to M4 (0.24 to 11 min) and BCPA 
models (0.25 to 21 min), particularly for longer tracks (Figures 4a and 
5a). While all three models exhibited similar accuracy on the shortest 
simulations, M4 was much more accurate on all larger simulations. 
For these large simulations, the accuracy of the M4 segmentation 
model was >80% on average when simulations were generated from 
uncommon distributions and >90% on average when generated 
from common distributions (Figures  4b, 5b and 6a). Additionally, 
M4 missed the lowest proportion of true breakpoints (uncommon: 
21%; common: 0.3%) compared to BCPA (uncommon: 67%; common: 
66%) and segclust2d (uncommon: 26%; common: 30%) across simu-
lations of all analysed track lengths.

3.2 | Clustering model comparison

When estimating the true number of states on both sets of simulations, 
M4 correctly determined the number of true states more frequently than 
the other methods and exhibited greater computational efficiency over 
all other clustering methods besides EMbC. The Bayesian LDA model 
took 2–23 s to run, highlighting the computational efficiency of this par-
ticular model. When added to the duration of the segmentation model, 
the proposed method ran much faster than the HMM (20–36×) and seg-
clust2d (2–178×) at all track lengths despite these models being fitted 
with only two to four states, whereas our method allows for up to seven 
states (Figures 4a and 5a). However, the time to run each EMbC model 
increased very little with increases in track length, but also automatically 
assumed four states were present. The LDA model from M4 correctly 
suggested three states as most likely for 18 of the 20 simulations gener-
ated from uncommon distributions and 19 of 20 simulations generated 
from common distributions (Figure 6b, Appendix S9). By comparison, the 
HMM suggested (via AIC and BIC) that three states were most likely in 
17 and 16 of the 20 analysed simulations generated by uncommon and 
common distributions, respectively. The segclust2d model suggested 
that three states were most likely in only six and five of the 15 analysed 
simulations generated from uncommon and common distributions, re-
spectively, based on BIC.

To enable direct comparisons among all four models that estimated 
behavioural states, we assumed three states were most likely for all 20 
simulations when calculating model accuracy. Using this assumption, we 
find that M4 demonstrated high accuracy in behavioural state estima-
tion for both sets of simulations, often equivalent or superior to the other 
clustering methods. When analysing simulations generated from uncom-
mon distributions, mean accuracy of M4 to classify the dominant state 
within each segment was greater than that of the HMM and segclust2d 
models at all track lengths (Figure 4c). However, mean accuracy of the 
EMbC model was slightly greater than M4 on this set of simulations at 
a track length of 5,000 observations. When analysing simulations gen-
erated from common distributions, mean accuracy of M4 was slightly 
below that of the HMM, but greater than the mean accuracy of the EMbC 
and segclust2d models at all track lengths (Figure 5c). Additionally, accu-
racy measures displayed little variability in M4 across tracks of different 
lengths and on each set of simulations, highlighting the increased stability 
of this framework. Similar to the pattern found for estimates of dominant 
behavioural states, the accuracy of behavioural state proportions was 
higher in M4 for all but the HMM on simulations generated from common 
distributions, as denoted by low RMSE (Figures 4d, 5d and 6c).

The accuracy of the estimated step lengths and turning angles 
distributions was relatively consistent across each set of simulations. 
For tracks generated from uncommon distributions, M4 was slightly 
more accurate than the HMM, but much more accurate than EMbC 
and segclust2d across all track lengths (Appendix  S9). However, 
HMM estimates were slightly more accurate than the Bayesian 
model on tracks of all lengths when generated from common distri-
butions (Appendix S9). When viewed as continuous distributions, it 
is clear that the HMM, EMbC and segclust2d models had difficulty 
estimating the true distributions of step lengths and turning angles 
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regardless of track length for the simulation with uncommon distri-
butions (Appendix S10). On the other hand, the HMM was able to 
perfectly estimate the state-dependent distributions of the simula-
tions generated from common distributions (Appendix S10).

3.3 | Snail kite analysis

The segmentation of 26 snail kite trajectories using M4 took 4 min to 
run and estimated 1 to 64 breakpoints for these individuals. Breakpoints 
were then used to define 444 track segments from all individuals 
(Figure 7a). These segments were clustered into states using M4, which 
took approximately 27 s to run. It appeared that there were likely three 
behavioural states, which comprised 91.6% of all state assignments on 
average (Figure 7b). To ensure that these three states were biologically 
interpretable, distributions of step lengths and turning angles were also 
evaluated (Figure 7c). The distributions showed: (a) a slow and tortuous 
behaviour; (b) a tortuous behaviour with intermediate speed; and (c) a 

fast and directed behaviour. For this reason, these behaviours were la-
belled ‘encamped, ‘ARS’ and ‘transit’ respectively.

Some individuals were only tracked for a short period of time and 
did not leave the natal area. However, 17 birds did emigrate from their 
natal site. Dispersal events were typically denoted by a brief period 
of ARS or transit behaviour (Figure  8a,b; Appendix  S9). The three 
longest tracks, which belonged to snail kites tracked for more than 
a year (SNIK 12, SNIK 14 and SNIK 15), displayed relatively synchro-
nous behaviour before, during and after their first breeding season. 
Two brief periods of high activity behaviour that occurred during and 
immediately following peak breeding season in 2019 may potentially 
represent pre- and post-breeding dispersal events (Figure 8a,c,d).

4  | DISCUSSION

We demonstrated that our Bayesian M4 framework (available within the 
bayesmove R package) can accurately identify changes in behavioural 

F I G U R E  4   Comparison of the performance of different methods on tracks simulated from uncommon distributions, where black points 
indicate the median for each boxplot. (a) The elapsed time to analyse each of the simulations is shown for the different methods on a 
logarithmic scale, where the measure for M4 reflects the sum of elapsed times from both the segmentation and LDA models. (b) Accuracy 
of breakpoint estimates is compared among the M4, segclust2d and BCPA models. (c) Accuracy of the estimates for the dominant behaviour 
of each track segment is shown for the M4, HMM, segclust2d and EMbC models. (d) Accuracy of behaviour proportion estimates per track 
segment is compared among the M4, HMM, segclust2d and EMbC methods
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states, reliably estimate the most likely number of behavioural states 
and properly characterize the state-dependent distributions of data 
streams. This two-stage model treats track segments as the unit of in-
terest (as opposed to observations) and relies on the discretization of 
data streams to avoid the need to specify parametric probability dis-
tributions. Importantly, the proposed method is computationally effi-
cient, a key characteristic given the ever-increasing storage capacities 
of modern sensors and their ability to measure a growing number of in-
trinsic and environmental variables (Whitford & Klimley, 2019; Williams 
et al., 2020). A comparison of model performance in addition to the anal-
ysis of an empirical dataset highlight the utility of the M4 framework.

4.1 | Method comparison

Although BCPA displayed comparable speed to M4 during track 
segmentation, the accuracy of the estimated breakpoints was much 
higher in the latter. Additionally, M4 was much faster and exhib-
ited greater accuracy of breakpoint estimates than the segclust2d 

method, which was not able to successfully analyse the simulated 
tracks of 50,000 observations. Since the accuracy of the segclust2d 
method was not much greater than the BCPA for either set of simu-
lations (Figures 4b and 5b), it appears that BCPA’s reliance on a single 
derived variable (i.e. persistence velocity) instead of separate data 
streams was not as limiting as was initially expected.

While HMMs are powerful methods that can incorporate 
individual-level random effects and account for cyclical patterns 
(McClintock & Michelot,  2018; Patterson et  al.,  2017), they can 
also be restrictive in some of their assumptions. Standard forms of 
HMMs require the use of parametric distributions, which may not 
fit the data streams well (Appendix S9; Langrock et al., 2018). While 
HMMs displayed greater accuracy than M4 when the selected 
parametric distributions matched the true underlying distributions 
(Figure  5c), we find that the proposed methodology performed 
better than HMMs when the selected parametric distributions 
did not match the true underlying distribution. By comparison, 
the segclust2d and EMbC methods are straightforward to apply 
when estimating latent behavioural states from a set of tracks, but 

F I G U R E  5   Comparison of the performance of different methods on tracks simulated from common distributions, where black points 
indicate the median for each boxplot. (a) The elapsed time to analyse each of the simulations is shown for the different methods on a 
logarithmic scale, where the measure for M4 reflects the sum of elapsed times from both the segmentation and LDA models. (b) Accuracy 
of breakpoint estimates is compared among the M4, segclust2d and BCPA models. (c) Accuracy of the estimates for the dominant behaviour 
of each track segment is shown for the M4, HMM, segclust2d and EMbC models. (d) Accuracy of behaviour proportion estimates per track 
segment is compared among the M4, HMM, segclust2d and EMbC methods



442  |    Methods in Ecology and Evolu
on CULLEN et al.

appear limited by their assumption of Gaussian distributions when 
partitioning observations into segments or into states, respectively. 
Since the most common data streams (i.e. step lengths and turn-
ing angles) are not typically modelled with a Gaussian distribution 
(McClintock et al., 2020), this likely contributes to the lower accu-
racy of these models.

The determination of the most likely number of states is another 
issue when fitting clustering models and HMMs since this is typically 
unknown a priori and is directly impacted by how well the selected 
parametric distributions characterize the states (Pohle et al., 2017). 
Unfortunately, HMMs often require multiple models to be fit and 
compared using information theoretic approaches, which tend to 
favour a greater number of states than are truly present and come 
at a high computational cost (Li & Bolker, 2017; Pohle et al., 2017). 
Importantly, while M4 allows for up to seven behavioural states, we 
only attempted to fit HMMs with two to four behavioural states. 
Even in this limited context, fitting HMMs was already much slower 

than fitting M4. Had we attempted to fit HMMs with two to seven 
behavioural states, the amount of time required for this would be 
substantially larger than what we report in Figures 4 and 5. A sim-
ilar issue is present in segclust2d, where models are fit with every 
possible number of track segments and states before comparing via 
BIC. A different problem is posed by the EMbC model, which im-
poses four states by default when analysing step lengths and turning 
angles. These issues are directly addressed by our framework since 
we use a mixed-membership model (LDA) with a penalizing prior to 
cluster track segments, enabling the estimation of the most likely 
number of states and the state-dependent distributions in a single 
step. While existing methods can provide useful behavioural infer-
ence depending upon the ecological question and dataset, the M4 
framework provides a powerful alternative when behaviours are 
complex, multiple data streams are available and these data are not 
well-characterized by parametric distributions and/or when datasets 
are large.

F I G U R E  6   Evaluation of model performance for a single simulation, as an example, for (a) breakpoint estimation, (b) determination of the 
shape of behavioural states and (c) estimating behaviour proportions over time. (a) A time series of true (purple tick marks) and estimated 
breakpoints (black lines) are shown for the segmentation of both data streams. (b) Discretized distributions are shown for each data stream 
per behavioural state where three states were determined to be most likely. Bars denote true proportions for each of the bins, whereas 
points indicate model estimates. (c) Time series of proportions for each behaviour are shown; thick, dark lines indicate true behaviour 
proportions, whereas thin, light lines indicate estimated proportions of behaviours



     |  443Methods in Ecology and Evolu
onCULLEN et al.

4.2 | Empirical applications

Three behavioural states were clearly estimated for the snail kite 
dataset, which was supported by biologically relevant distributions 
of step lengths and turning angles. The ‘encamped’ state likely rep-
resents fine-scale behaviours that include resting, feeding and time 
spent at the nest (as a fledgling or reproductive adult). On the other 
hand, the ‘ARS’ state likely includes exploration for nearby suitable 
habitat as well as foraging bouts (Martin et al., 2006; Pias et al., 2016). 
Finally, the ‘transit’ state includes fast, directed movements associ-
ated with dispersal of snail kites in addition to departure from wet-
lands experiencing low water levels (Robertson et al., 2017).

The time series of snail kite behaviour proportions showed 
variability in the timing of emigration from natal sites among indi-
viduals, but changes in behaviour were generally synchronous in 
the three birds that reached maturity. This variability in the timing 
of emigration from natal sites could be due to a variety of factors, 
such as hatching date, body condition and local environmental 
conditions (Cattau et  al.,  2016; Fletcher et  al.,  2015; Rodgers & 
Schwikert, 2003). The shifts in behaviour proportions appeared to 
show multiple phases of high and low activity, some of which seem 
to match the phenology of natal dispersal (summer), pre-breeding 
dispersal (early spring) and post-breeding dispersal (late summer) 
(Bennetts & Kitchens,  2000). While the continued monitoring of 
these tagged birds should provide greater evidence for the charac-
terization of activity budgets over ontogeny, future research could 
also explore the primary drivers of snail kite movement and habitat 
use within each behavioural state through the inclusion of environ-
mental covariates.

4.3 | Caveats and extensions

In addition to the M4 method proposed by this study, other non-
parametric state estimation methods have been previously devel-
oped (Langrock et  al.,  2018; Nams,  2014; Sur et  al.,  2014). In one 
such example, the behavioural movement segmentation (BMS) 
model proposed by Nams (2014) uses a combination of direct search 
optimization, iterative sampling and k-means clustering to estimate 
latent states from track segments. BMS is similar to our proposed 
M4 framework in that both methods are nonparametric, partition 
multiple data streams into segments and cluster segments into la-
tent states (Nams,  2014). However, M4 differs both technically 
and conceptually from BMS in that M4 proposes breakpoints using 
RJMCMC, the number of likely states are estimated within a single 
model run (instead of using multi-model selection) and track seg-
ments are expected to be comprised of multiple states rather than 
just one. We believe that practitioners should carefully evaluate 
the properties and assumptions of different methods to determine 
the best method to properly analyse their data and address their 
objectives.

F I G U R E  7   Snail kite results from track segmentation and 
determination of the most likely number of behavioural states. (a) 
A subset of a time series from a single individual (SNIK 12) that 
displays estimated breakpoints (black lines) overlaying each data 
stream. Time series of step lengths and turning angles are shown 
on a continuous scale in relation to estimated breakpoints for ease 
of interpretation. (b) Boxplot showing the estimated proportions for 
each of the seven possible behaviours from all 444 track segments 
analysed. (c) Distributions of step lengths (km) and turning angles 
(rad) from each of the three retained behavioural states, ordered 
from slowest to fastest
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Although M4 effectively classified behavioural states from both 
simulated and empirical tracks, there are some limitations to this 
approach. The selection of the number and width of bins when dis-
cretizing data streams is a subjective choice that impacts the results 
from the segmentation model and ultimately the estimation of be-
havioural states. Therefore, practitioners may need to test differ-
ent binning methods if the segmentation model does not produce 
reliable breakpoints that match up with plots of the data stream(s). 
Additionally, our model implicitly assumes that location error is 
negligible or requires that it be accounted for via another method. 
Although our model can analyse data streams from regular or irregu-
lar time intervals, this will also depend on the inherent properties of 
the data streams themselves. Since step lengths and turning angles 
are calculated from multiple successive observations, these values 
will not be comparable once the data are not close to a regular time 
interval. However, variables such as net squared displacement (the 

squared distance from the starting location to all other relocations) 
can be analysed over irregular time intervals.

M4 can be extended to analyse other types of data streams and 
can include prior knowledge on the timing of behavioural shifts. 
Although only step lengths and turning angles were analysed for 
the simulated and empirical tracks, additional ancillary data coming 
from the sensor (e.g. elevation, salinity, temperature or accelerom-
eter data) could be used to make behavioural inference. These data 
streams could come from all types of distributions (i.e. continuous, 
discrete, bounded between 0 and 1). It is also relatively straight-
forward to deal with zero-inflated data by including all zeroes in 
a single bin. Additionally, our segmentation model can be imple-
mented in a semi-supervised fashion, by which practitioners pre-
specify breakpoints for the time series based on a priori knowledge 
and these breakpoints will be considered by the RJMCMC algo-
rithm. This may be particularly useful if daily activity patterns are 

F I G U R E  8   Patterns of movement 
behaviour are shown over time for the 
three snail kites that were tagged over the 
longest durations, with particular focus 
on SNIK 15. (a) Time series of behaviour 
proportions are shown with respect to 
peak breeding season (grey panels) for 
each of the three snail kites, with possible 
natal, pre-breeding and post-breeding 
dispersal events denoted by red boxes. 
Maps of SNIK 15 movement depict 
the starting (green circle) and ending 
locations (red triangle) for (b) natal, (c) 
pre-breeding and (d) post-breeding season 
dispersal events, as well as the dominant 
behaviour associated with each track 
segment. Observations without behaviour 
estimates (i.e. observations not recorded 
at 1-hr time intervals) are shown as open 
points
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expected or if only one of several possible states can be clearly 
identified.
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